Student Assistant (m/w/d) in Computer Vision and Deep Learning Research
Eintrag vom 21.11.2024
Angebotsnr. 118250
Stelle ist zu besetzen ab: 15.01.2024Angebotsnr. 118250
Beschreibung
We are seeking a motivated student assistant to join our project, "Data-Efficient Hybrid Multi-Task Approach for Object Detection in Real-World Applications", under the KiKIT program at the Karlsruhe Institute of Technology (KIT). This research focuses on enhancing vision systems by integrating data-driven methods with prior knowledge, emphasizing multi-task learning (MTL) to improve performance with minimal labeled data.
Responsibilities:- Assist in collecting and preprocessing datasets for object detection, depth estimation, and semantic segmentation.
- Support the implementation and testing of MTL models, incorporating prior knowledge to optimize system robustness and efficiency.
- Conduct experiments to evaluate model performance across real-world scenarios.
- Document methodologies, experiments, and results for future research and reproducibility.Requirements:
- Enrollment in a Master's program in Computer Science, Data Science, Electrical Engineering, or a related field.
- Proficiency in Python and experience with machine learning frameworks such as TensorFlow or PyTorch.
- Solid understanding of machine learning and computer vision concepts.
- Strong analytical skills and the ability to work both independently and collaboratively.Benefits:
- Hands-on experience in advanced machine learning research.
- Flexible working hours to accommodate your academic schedule.
- A collaborative environment within a leading research institution.Position Details: Duration: 40 hours per month for 6 months, with the possibility of extension.Mode of Work: Hybrid, with primarily online collaboration depending on task requirements.Application Process: Interested candidates should send their CV, a brief cover letter, and academic transcripts to moussa.sbeyti@kit.edu.
Anhang PDF: KIT_MKS_HIWI.pdf, 148 kB
- Art der Anzeige
- Studentische Hilfskraft (Hiwi) / Werkstudent*in
- Gewünschtes Studium
- Ingenieurwissenschaften
Elektrotechnik & Informationstechnik
Informatik
Mechatronik & Informationstechnik
Mechanical Engineering
Remote Sensing and Geoinformatics - Naturwissenschaften und Technik
Mathematik
Physik - Wirtschafts- und Rechtswissenschaften
Wirtschaftsinformatik
Wirtschaftsingenieurwesen
Wirtschaftsmathematik
- Ingenieurwissenschaften
- Gesuchter Karrierestatus
- Studierende*r*n
- Arbeitsregion
- Karlsruhe und Umgebung
- Unternehmensbereich
- Forschung
- Sprache am Arbeitsplatz
- Deutsch und Englisch
- Art des Unternehmens
- Wissenschaftliche Einrichtung
- Homeoffice
- Homeoffice möglich
Kontakt
Herr Moussa Kassem Sbeyti
Scientific Computing Center
Deutschland
E-Mail: Melden Sie sich bitte an,
um die E-Mail Adresse lesen zu können
Scientific Computing Center
Deutschland
E-Mail: Melden Sie sich bitte an,
um die E-Mail Adresse lesen zu können